
SoupBinTCP
Version 3.00

1. Overview
SoupBinTCP is a lightweight point-to-point protocol, built on top of TCP/IP sockets
that allow delivery of a set of sequenced messages from a server to a client in real-
time. SoupBinTCP guarantees that the client receives each message generated by
the server in sequence, even across underlying TCP/IP socket connection failures.

SoupBinTCP clients can send messages to the server. These messages are not
sequenced and may be lost in the case of a TCP/IP socket failure.

SoupBinTCP is ideal for systems where a server needs to deliver a logical stream of
sequenced messages to a client in real-time but does not require the same level of
guarantees for client generated messages either because the data stream is
unidirectional or because the server application generates higher-level sequenced
acknowledgments for any important client-generated messages.

SoupBinTCP is designed to be used in conjunction with higher lever protocols that
specify the contents of the messages that SoupBinTCP messages deliver. The
SoupBinTCP protocol layer is opaque to the higher-level messages. Note that unlike
the ASCII version, messages may include any possibly byte.

SoupBinTCP also includes a simple scheme that allows the server to authenticate the
client on login.

1.1 SoupBinTCP Logical Packets

The SoupBinTCP client and server communicate by exchanging a series of logical
packets.

Each SoupBinTCP logical packet has:

A. a two byte big-endian length that indicates the length of rest of the packet
(meaning the length of the payload plus the length of the packet type – which is 1)

B. a single byte header which indicates the packet type

C. a variable length payload

Two Byte Packet
Length

Packet
Type

Variable-length
payload

SoupBinTCP Logical Packet Structure

Notes:

The SoupBinTCP logical packets do not necessarily map directly to physical packets
on the underlying network socket; they may be broken apart or aggregated by the
TCP/IP stack.

The SoupBinTCP protocol does not define a maximum payload length.

Unlike the ASCII version, the payload may contain the line feed character or any
character.

1.2 Protocol Flow

A SoupBinTCP connection begins with the client opening a TCP/IP socket to the
server and sending a Login Request Packet. If the login request is valid, the server
responds with a Login Accepted Packet and begins sending Sequenced Data Packets.
The connection continues until the TCP/IP socket is broken.

Each Sequenced Data Packet carries a single higher-level protocol message.

Sequenced Data Packets do not contain an explicit sequence number; instead both
client and server compute the sequence number locally by counting messages as
they go.

The sequence number of the first sequenced message in each session is always 1.

Typically, when initially logging into a server the client will set the Requested
Sequence Number field to 1 and leave the Requested Session field blank in the Login
Request Packet. The client will then inspect the Login Accepted Packet to determine
the currently active session. Starting at 1, the client begins incrementing its local
sequence number each time a Sequenced Data Packet is received. If the TCP/IP
connection is ever broken, the client can then re-log into the server indicating the
current session and its next expected sequence number. By doing this, the client is
guaranteed to always receive every sequenced message in order, despite TCP/IP
connection failures.

SoupBinTCP also permits the client to send messages to the server using
Unsequenced Data Packets at any time after the Login Accepted Packet is received.
These messages may be lost during TCP/IP socket connection failures.

1.3 Heartbeats

SoupBinTCP uses logical heartbeat packets to quickly detect link failures. The server
must send a Server Heartbeat packet anytime more than 1 second has past since the

server last sent any data. This ensures that the client will receive data on a regular
basis. If the client does not receive anything (neither data nor heartbeats) for an
extended period of time, it can assume that the link is down and attempt to
reconnect using a new TCP/IP socket.

Similarly, once logged in, the client must send a Client Heartbeat packet anytime
more than 1 second has past since the client last sent anything. If the server doesn't
receive anything from the client for an extended period of time (typically 15
seconds), it can close the existing socket and listen for a new connection.

1.4 End of Session Marker

The server indicates that the current session has terminated by sending an End of
Session Message. This indicates that there will be no more messages contained in
this session.

The client will have to reconnect and login with the new Session ID or a blank(space-
filled) Session ID to begin receiving messages for the next available session.

1.5 Data Types

Character data fields are standard ASCII bytes.

Integer fields are binary big-endian values.

2. SoupBinTCP Packet Types

2.1 Debug Packet

A debug packet can be sent by either side of a SoupBinTCP connection at anytime.
Debug packets are intended to provide human readable text that may aid in
debugging problems. Debug Packets should be ignored by both client and server
application software.

Debug Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer Number of bytes after this

field until the next packet

Packet Type 2 1 "+" Debug Packet

Text 3 Variable Alpha-

numeric Free form human readable
text.

2.2 Logical Packets Sent by a SoupBinTCP Server

2.2.1 Login Accepted Packet

The SoupBinTCP server sends a Login Accepted Packet in response to receiving a
valid Login Request from the client. This packet will always be the first non-debug
packet sent by the server after a successful login request.

Login Accepted Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer Number of bytes after this

field until the next packet

Packet Type 2 1 "A" Login Accepted Packet

Session 3 10 Alpha-

numeric
 The session ID of the session

that is now logged into. Left
padded with spaces.

Sequence
Number

13 20 Numeric The sequence number in
ASCII of the next Sequenced
Message to be sent. Left
padded with spaces.

2.2.2 Login Rejected Packet

The SoupBinTCP server sends this packet in response to an invalid Login Request
Packet from the client. The server closes the socket connection after sending the
Login Reject Packet. The Login Rejected Packet will be the only non-debug packet
sent by the server in the case of an unsuccessful login attempt.

Login Reject Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer Number of bytes after this

field until the next packet

Packet Type 2 1 "J" Login Rejected Packet

Reject Reason
Code

3 1 Alpha See Login Reject Codes
below.

Login Reject Codes

 Code Explanation

"A" Not Authorized. There was an invalid username and password

combination in the Login Request Message.

"S"
Session not available. The Requested Session in the Login
Request Packet was either invalid or not available.

2.2.3 Sequenced Data Packet

The Sequenced Data Packets act as an envelope to carry the actual sequenced data
messages that are transferred from the server to the client. Each Sequenced Data
Packet carries one message from the higher-lever protocol. The sequence number of
each message is implied; the initial sequence number of the first Sequenced Data
Packet for a given TCP/IP connection is specified in the Login Accepted Packet and
the sequence number increments by 1 for each Sequenced Data Packet transmitted.

Since SoupBinTCP logical packets are carried via TCP/IP sockets, the only way logical
packets can be lost is in the event of a TCP/IP socket connection failure. In this case,
the client can reconnect to the server and request the next expect sequence number
and pick up where it left off.

Sequenced Data Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer Number of bytes after this

field until the next packet

Packet Type 2 1 "S" Sequenced Data Packed

Message 3 Variable Any Defined by a higher-level

protocol, but must not
contain any embedded
linefeeds.

2.2.4 Server Heartbeat Packet

The server should send a Server Heartbeat Packet anytime more than 1 second
passes where no data has been sent to the client. The client can then assume that
the link is lost if it does not receive anything for an extended period of time.

Server Heartbeat Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer Number of bytes after this field

until the next packet

Packet Type 2 1 "H" Server Heartbeat Packet

2.2.5 End of Session Packet

The server will send an End of Session Packet to denote that the current session is
finished. The connection will be closed shortly after this packet, and the user will no
longer be able to reconnect to the current session.

End of Session Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer Number of bytes after this field

until the next packet

Packet Type 2 1 "Z" End of Session Packet

2.3 Logical Packets Sent by the SoupBinTCP Client

2.3.1 Login Request Packet

The SoupBinTCP client must send a Login Request Packet immediately upon
establishing a new TCP/IP socket connection to the server.

Client and server must have mutually agreed upon the username and password
fields. They provide simple authentication to prevent a client from inadvertently
connecting to the wrong server.

Both Username and Password are case-insensitive and should be padded on the right
with spaces.

The server can terminate an incoming TCP/IP socket if it does not receive a Login
Request Packet within a reasonable period of time (typically 30 seconds).

Login Request Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer

Number of bytes after this
field until the next packet

Packet Type 2 1 "L" Login Request Packet

Username 3 6 Alphanumeric Username

Password 9 10 Alphanumeric Password

Requested
Session

19 10 Alphanumeric Specifies the session the
client would like to log into,
or all blanks to log into the
currently active session.

Requested
Sequence
Number

29 20 Numeric Specifies the next sequence
number in ASCII the client
wants to receive upon
connection, or 0 to start
receiving the most recently
generated message.

2.3.2 Unsequenced Data Packets

The Unsequenced Data Packets act as an envelope to carry the actual data messages
that are transferred from the client to the server. These messages are not sequenced
and may be lost in the event of a socket failure. The higher-level protocol must be
able to handle these lost messages in the case of a TCP/IP socket connection failure.

Unsequenced Data Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer Number of bytes after this field

until the next packet

Packet Type 2 1 "U" Unsequenced Data Packed

Message 3 Variable Alpha-

numeric
Defined by a higher-level
protocol, but must not contain
any embedded linefeeds.

2.3.3 Client Heartbeat Packets

The client should send a Client Heartbeat Packet anytime more than 1 second passes
where no data has been sent to the server. The server can then assume that the link
is lost if it does not receive anything for an extended period of time.

Client Heartbeat Packet

 Name Offset Len Value Notes

Packet Length 0 2 Integer Number of bytes after this field

until the next packet

Packet Type 2 1 "R" Client Heartbeat Packet

2.3.4 Logout Request Packet

The client may send a Logout Request Packet to request the connection be
terminated. Upon receiving a Logout Request Packet, the server will immediately
terminate the connection and close the associated TCP/IP socket.

Logout Request Packet

 Name Offset Len Value Notes

Packet Length 0 2 Binary Number of bytes after this field

until the next packet

Packet Type 2 1 "O" Logout Request Packet

3. Support
Any questions about the SoupBinTCP specification should be emailed to
devsupport@nasdaqomx.com.

4. Current Restrictions
None known.

5. Revision History

Version Date Revision History
1.0 09/01/1999 Initial Distribution
2.0 10/29/2001 Added Heart beats in both directions to remove the

dependence on TCP/IP keepalives to detect link failures.
Server and client are now both guaranteed to send
something (either data or heartbeat) at least once per
second. This way, if you don't hear anything from the
socket for several seconds, you can assume the socket is
dead and close it.

Added Debug Messages because they are handy for
debugging problems. An example is to have a server send
a Debug Message upon accepting a connection identifying
the name of the machine. This way, someone can TELNET
into a server and immedeately verify that they have the
right host.

Added "envelopes" around both the outbound Sequenced
Messages and the inbound Unsequenced Message to
differentiate them from the heartbeats.

3.0 10/15/2008 Initial distribution of SoupBinTCP3.0, taken from
SoupTCP3.0. Packets are two byte length-prefixed instead
of new-line terminated, but otherwise the packet types are
the same.

Widened Sequence Number fields on login related packets
in order to support streams of 1 billion messages or larger.

Added an explicit End of Session Packet so that the
SoupTCP session layer code can more cleanly detect the
end of a SoupTCP session.

3.0 04/12/2011 Removed conflicting sentence from Sequenced data packet
description

3.0 03/20/2014 Added language to deal with scenario where user submits
a next expected sequence number that is in excess of the
current highest sequence message on the server.

mailto:devsupport@nasdaqomx.com.

